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1. Introduction. Apparently the Green-St. Venant and the Alamansi-Hamel
strain tensors were first expressed in curvilinear coordinates in terms of

displacements as

1 c '
= = // l
Exp= 3 (“Aua TUpla T Y%t IB> )
and as
/’/'
_1 k
€137 2 (uilj M 1E “kl;fl”lji (2)

by Green and Zerna [1]. Although thg,,Cartés/ié;n counterparts of (1) and (2) had
beeﬁ enunciated much eariier s their extension to curvilinear reference frames ‘
has been found to be fraught with difficulties. Since it 1s well known that a
satisfactory solution to many problems in continuum mechanics can be achieved

only through the use of curvilinear coordinates, these difficulties must be

~—

surmounted.

Forms (1) and (2) were later repeated in a text by Green and Zernma [2],
and were rederived by Doyle and Ericksen [3]. They have also played an explicit
role in the works of Green and Adkins [4], Eringen [5], and others. In all of
these EAB vrepresents the messgure of strain tensor written in terms of a coor-
dinate syétem used to describe the, undeformed configuration. In this system
the deformation is represenied 'byi UA,' or UA' This same deformation msay be
measured with reference to a coordinate systém chosen to describe the deformed

body, in which case the strain is reco ~in terms of e

i3
is represented by ui » Or u,- Strain in both reference systems has been related

t .
o the covariant deriv?tives UAIB ?r uil 3 as shown
\\
\

X

and the displacement
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It is the purpose of this paper to show (i) th?.t the use of covariant deriv-
atives of the displacement is incorrect, and (1i) that the correct form of (1)
and (2) involves only ordinary partial derivatives of the displacements.

2. Nontensor Character of UAIB and u.il 3 All of the sbove authors define

UAlB and uil,j as
Usip = Up,p - PSB Ug (3)
and
CTTRRPELAES | (+)
in which the comma denotes partial differentiation with respggjl; to the coordinates
i

whose indices follow, and where I, and P%C denote Christoffel symbols of the

Jk
second kind. Meaningless though it may be, the formal operations appearing on
the right-hand side of (3) and (4) can be applied to nontenso/rs as well as to
tensors. However, when these operations are applied to a tensor ti (or TA) » o
the theoiy guarantees fhat til 3 (or TAlB) is likewise a tensor.-*When they are
applied to a nontensor, the theory does not supply such a guarantee.

The cornerstone of t};e present analysis is the observation that large dis-
placements are not tensors and hence that UA iB 113 are not tensors. Consider,
for example, a displacement up, in & circular cylindrical coordinate system xi y 88

and u

e — -~

T~
shown in Fig. 1, where z* is taken as a Cartesian frame. If uy and u, are

tensors, then

i
Uy = X Yy , (5)
should hold, where kS §2i . : ’ (6)
@ " ya

According to Fig. 1, in which x® and z® are perpendicular to the plane of

the page,- ‘ .’l/; '
xI = [(21)2 + (za)zj‘ |
x2 = tan"%(z2/z1) > | (1)
%3 = 23
J
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and the displacements in the two systems are related according to

Uy = xHcos(x® + u®) - cos x2] + ul cos(x® + )
Us = x¥sin(x® + u2) - sin x2] + u? sin(x® + v2) (8)
Us = ua-,

wherein Ua' refers to the Cartesian frame and ui refers to the circular

cylindrical frame. Carrying out the summations implied in (5), in which the

xi are determined from (7), we find that (5) becomes

Uy = u3 cos x° - (uo/x%)sin %2 ‘
Us = uz sin x® + (ug/x)cos x2 | (9)
U3 = Ug

When (u2)2 << 1 equation (8) becomes

Uy = xMu? sin x! + uy cos %@

Us = x*u? cos x2 + u?t sin x2 (10)
’\ ’ .

US = O b}

which may be seen to agree with (9) when we recall that
1 30 8gre

(x*)%u®

i
ul=u .

uz

=

us it is evident in the example that (5) holds only in the limiting case of
infinitesimal displacements. Conversely, UA and u, are not tensors when their
magnitude is unrestricted, and thus the presumption tpa.t UAIB and ui| 3 possess
the tensor character implied by their indices is unjustified. Stated in more
general terms, (1) and (2) are valid only when (i) the displacements are infini-
tesimal, or (ii) when the displacement is radial as measured in either a gpherical

or circular cylindrical coordinate system.
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If UA and u; were tensors, regardless of their magnitudes, 1t would

then be carrect to write that

- 7% B
Uai = Z%a 28 Ya,p (1)
a.nd.
S O
uil,j =2 zj ua.,B . (12)

Since neither U, mor u;, is a tensor, however, neither (11) nor (12) is

correct. Continuing with the use of circular eylindrical coordinates, for

example, the left-hand side of (12) yields

E

_ _ ol
Uply = Uy,, = W5, - A (13)
. )
but the right-hand side 1s such that
23 z?_ U, (u,, +uZ,, + 1l)eos v® -1 (1%)

Should the displacement be only radial, then u® = O and the right-hand sides
of (13) and (14) asgree. This is indicative of the behavior of other components
of (11) and (12). Since direct calculation shows that (11) and (12) fail to
do not have

hold, it is again evident that the quantities U, and u

AlB il3

general tensor character, a conclusion establisheé. by the ea.;-lier failure of

(5). 7S
3. Derivation of Strain-Displacement Relations. It will prove c:;:;léient o

to consider six coo;’dinate systems, three for ~l;he initial confi@,ation of the |

body and three for the deformed configuration. In the :tnitigl/configuration

the material points are assigned coordinates Z relaj;;;vé/;:o & Cartesian

frame and coordinates XA relative to an ortl}ggen”a/l/curvilinear frame at i

time ‘to‘ As the deformat_ion p'ro'gressesﬁé 7" and XA coordinates of‘ a

material point will change accordingly. Points in the deformed body are assigned

"
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coordinates z:l relative to a second Cartesian sys;tem and coordinates xi
relative to & second orthogonal curvilinear frame, at time t, t £ t5. For
ease of discussion we shall require that the origins of these four systems lie
within the material body, although this is not essential. Having chosen the
four reference frames, we now mark those points of the body which lie along
the 2 and z' axes in the initial and deformed body. Next we find the images
in the deformed body of those points lying along the 2!, 22, and Z® axes

in the original body and lsbel these image lines ¢, 2, and ¢, respectively.

lying along the z1, z2, and z3 axes in the deformed body, are to be lsbeled

9, 93, and 3. Usually neither the ¢® nor the cpa' lines will be orthog-

onal. Thus
2" = z“’(zB,t), L = x1(2%) - (15)
and -
2 - 2, - : (16)
while
[ P IO P B T S RO P (27)

whenever specific values i, 2, or 3 are asslgned to a. In other words, the
trio of coordinste numbers associated with a particular particle of the bod&
is the same for both the cpu' and z* frames. This i)article will generally be
assigned s differenf.\trio ot coordinate mumbers relative to the 2~ frame » but
this second trio will agree with the particle's ¢° coordinate numbers.
. . -

It appears that this choice of coordinafes is superior o that in which

the deformation 1s described in terms of the nonorthogonal system comprising

the deformed lines of the original frame, as in section 2.1 of reference (4],
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This is because the stress tensor may herein be directly related to the displace-
ments. Moreover, it is usually quite difficult to formulate problems in terms
of the deformed state when the coordinates to be used are so vague that the
metric itself is unknown.

Forgetting for the moment that we are concerned with deformation sy We
~ observe that the four coordinate systems Za', XA ’ zc', and x1 describe a common
space, whose squared element of arc is given by

(ds)2=cldeMdXN=dZa'dZa=gij axt axd = az® azP (18)

)

where repeated indices signify summation over the iira.nge 1, 2, 3. Hence,

=3

0
50!2
z"‘

(19)

where

dedg, Aol (2

to which we add,for future use, that

¥
a
e
Q/
N
Q

zv = 22 o= =
a o
S @ _ ot
S o, = .
P BZB, B azB

Remembering now that we are in fact concerned with the measurement of
deformation, we next cor;sider an arc length made up of marked elements within

the undeformed material body, for which .
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2 _ _ i..d
(as) _GmddexN_cijdxdx (21)
Similarly, the square of incremental arc length in the deformed body is given
by ® .
2 _ i.3_
(ds) - g;y O ax .'cMNddexN (22)

Hence the Green-St.Venant measure of strain, which is referred to the coor-

dinates of the initial configuration, is
E, = = (Cyn - Gpp) ' (23)
'AB ~ 2 ‘“AB AB/ .

and the Alsmansi-Hamel measure, referred to the coordinates of the deformed

body, is
1
€i,j = E (gij - cij) (21"')

. -
In order to phrase the right-hand sides of (23) and (24) in terms of /-

7/
displacements, we begin by noting that /
) 13 . :
v = 813 Su SN / (25)
where s
. o
i i a7 - :
Sy = Xy Py A | (56)
and that S B
cijz(;}msl;sg ] o Aer)
where "
_Map .
Sl;.i— xg %5 23 - (28)
Thus
1 M _N
EAB=.§GW(HKH§-8A 8g) - (29)
\_.



and by
\ ) N\
. _ 1 m.n .m.n
€43 " 28m \%1 %5 - By hj) (30)
in which
_ i a .y
HX"R?.SA'XE%ZA (31)
and
m _m _Ja.a B
hi—rAS‘;‘—xaQB zy (32)

— ey

A glance ‘at Fig. 2 shows that the displacement may be found from either

v = z‘; P o | (33)
in the Z* frame » or from
= 0¥ - zg zP - (34)

in the 2" frame. Differentiation of (33) with respect to 2’ reveals that

v, = 8r - o |
2y y (P., p) A (35)
so that i
- g = (e - ,)) 2 (36)
A a \ Y r) “A
M 4
=8, -0, 2 .
A y “A xcl: (37)
Correspondingly, differentiation of (34) with respect to 2z’ shows that
| |
o . |
By =0y =0 ¢ (38)
and hence
m__m B a :
hi - .xCL u )B zi + 57 . (39)
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Substitution for HX from (36) into (29) and for h} from (39) into (30)
results in
= }- % T' i
EAB 2 ZA ZB (U7:"] ¥ UTI:7 * U?\:V U7\’7l) (40)
and
_1,B.1 -
€132 % 23 (%5 " U0 = Urp U g) (42)

Although (40) and (41) are correct as they are written, they express Eyp

(or €,,) in terms of quantities measured in the 2 and 2% (or x' and z%)

frames. This use of two reference frames may be reduced to one by noting that

u_ = Ua(UA,XB,t) - '_ (k2)
and |
u, = u ui,xi,t) - (43)

At a particular time +t = t; the displacements are effectively time independent

s0 that »
Us,d = Faa UA’B xlé *+ Us,A X’é ’ (k)
T 3 '
o U, p = tar oy Xt Ta, g % - (45)
— !
where
. oU ou
= = & - _@
and where
~ B aUa' . _ aua
Va,0 = —x» B 4=F
OA ox

have been introduced to emphasize that these four terms in (44) end (45) depend
upon the transformations as shown in (42) and (43), while UA’B and ui’.1 terms

depend upon the spatial functions obtained from

i -k e

%

J
4
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ot = v, e) | (46)

ol = v, t) (47)

evaluated at time t = t;3.
Substitution for the displacement derivatives from (44) and (45) into

(40) and (41) results in the desired expressions

Epp

11¢om 1 URs
2[(zA UC,B+ZBUC,A) En +ZAUnB+ZBUmA

c ~ D ~ a
+ (8o U sp t UT’A)(ETD U, + UT,B)] (48)

and
1 - S
1372 [(22 uk’j ¥ 23‘ wy Vet 2] Ty, ¢ zg‘uq,i
+ '(ng uk,i + Tl—,-,i)(gq-n un.vj + ﬁ-r,j):] ‘- (%9)
Notice once again that if U, or U were tensors only then would it be

correct to write

Upip = 25 Zg Uz,n (50)
and
B uilj = Z;{ Zg uy,n H (51)

but since neither U, nor‘ui is a tensor, (Lk4) and (45) must be used as tggy’
stand. Obviously (L44) and (45) agree with (1) and (2) for (i) any displéce-
ments whenever XA and x1 represent Cartesian coordinates, and fo;, ii)
exclusively radial displacements in tcrme of either circular cyiigdrical or
spherical coordinates. |

4. Strain-Displacement’Relations in Circul///CyI///rical Coordinates.

Consider the geometry illustrated in Fig}/I) wherein the Cartesian coordinates

z® are related to the circular cylindrical coordinates x1 as




zt = x1 cos %2

2 - x1 gin x2 (52)

N
1]

23 = X8
and where the noninfinitesimal displacement U in the Cartesian system is

related to the displacement ui in the circular cylindrical system according

to equations (8). From (8) and (52) we find that t?e nonzero values of z‘;'

are

zi‘ = cos x2 ’zi = gin x® T
z; = -x1 gin x® z2 = x* cos x2
Zg = l,
that the nonzero values of § , are )
‘-
£,, = cos(x® + u?)
.5 = -(x* + ut)sin(x® + u?)
Epy = in(x® +u2)
£, = (x1 + ut)eos(x® + u?)
S ‘
§33 = l,
and that the nonzero velues of 1"1'-CJL ; 8re
2

i,,, = cos(x® + u®) - cos x2

B, . = xY[sin (x2 + %) - sin x2] - u? ein(x® + )

ﬁz,l = sin(x® + u2) - sin x?

?12 5= x [ cos(x® + u2) - cos x2] + ur cos(x® + u?).
P4

Substitution of these values into (49) and subsequent algebraic simplifica-
tion results in the following strain-displacement relations, expressed in circular

cylindrical coordinates:

»
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ul,l (2 cos u2 - 1) + 2 (cos u? - 1)

€11

- %[(ul‘,l)2 +(w2,,)° ( +uh)® + (u3,,)7)

2

b 2 +1 2 2
(ut,, - u%,,) x* sin v® - u%,,

u' sin u® + u',, cos u

€12

+u?,; x* (x* + ul)cos u? - ;2L- [ul sin v2 + ut,, (ul,, +1)

18

+uZ,, (B, +1) (xt +ut) +u%,, u?,,)

€13 = -u?,, (x* + u?) sin v® + % [ut,5 (2 cos v - 1) Vs

2
+ ua’l (1 - us,a) - uty, ‘11:3 - u2,; u?,; (xt+ul)”]

€22 = (x* +u') [(2 cos v® - 1) x* - ul] wF,, +2 uza/xléin -
2 ,
+ut x* (2 cos v - 1) + (x*)” (cos u? - 1) - X [(ul’a)z

///

i

£ (12,,)7 (2 +ut) 4 ()% 4 (1{3,3)5r'

€23 = ul,, x* sin u® + w3, g{l £x* + ut) cos u?

]

1
+5 [u3,2~(l - ud,,) - B, (1 +4B,,) (xt +ut))

1 2
1’-3:3 -5 [(ut,s) + (u2:3 (x* + ul) + (u® ,3)

2
€33 ]

In terms of the more common r, 8, z form of the circular cylindrical

coordinates, the pEsical components of the preceding six equations read

. err'._. ;.. <2 cos % - l) + 2<cos % - 1)
2 2
- %[(u,r)e + (:L + %) (v,r + %) + (w,r)a] (53)

(1+\(2cos:-—-l>v,9 \u’e in% )

-

-

(Ecos!--l>+cos.f-l__[<u’9>
+ vy (L+;> +<I_-> + (w,z)] | (54)

\ ) Lo '
~ -~

~ '

~ - .

"'llﬁ
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P

s
1 u /
_
e
vy v, 7,
_ _ 1_ 6 < v o) I 3

2
u v
+ (1 + ‘i.") (Vye +1) Vi ~ ‘;) + Vi V:e] (56)
v 1 ) v .
€ = Vs, (r + u) sin ~+ 5 [u,z <2 cos — - 1>
+ W,r (l - V,z) - u’r U.,z - V,r V,z (I"+ u)] . (57)
e - v ( u 4 . o~
€0 = U, sin Tt Vs, \l + r> cos o
N R N (R R C ) (58)
2! r ’Z ’z ’6 T

vhere u, y\, and v represent the dis stients Aéi;ﬂ;_;ﬁé r , 9 » 2 coordinate
lines, respéctivéi&? It:tis easy to show that (53) through (58) reduce to the
classical infini‘besima\“l strain-displacement relations whenever u, v, and w
are allowed to becqme ;o small that second and higher order terms may be
neglected. -

Strain-displacement relations in the original coordinate system assume

Eiy = Uy, + 2 0%, (X* + U?) sin U

+ 20U (12,,)° (R UM+ (03,071 (59)
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Epp = U3, (Xt + ut)? + xT Ut + %‘- [(Ul,a)"a
+ (v2,,)% (xt + v1)® + (U + (U3, ,)%) (60)
Ess = U%,q + = f(ul,s)a +(12,5)7 (% + UM + (03,,)%) (61)
Ein = % [ul,, + U2, (x* +U4)°- U2 sin U2 + UL, UR,,
+ 13, U2, (x* + U7 + U3, U3, ] | (62)
Eis = -]2'- (v, . ul,, + UL, UL, + 0B, UB, (X +UY) + 1}5,: Ua;,a] (63)

Epg = %— (U3, + U3, (x* + ul)® + ul,, U, + 02,5 U3,, (xT+ URF 4 U3, U8, ]

(64)
Equations (59) through (64) also reduce to the classical infinitesimal relations
whenever second and higher order displacement terms may be neglected.

L. Conclusions. Usually equations derived from (48) and (49) differ from

the strain displacements derived from (1) and (2). Accepta.ﬁce of (1) and (2)
in the past may, perhaps, be attributed to their application to‘pzl-oblems involv-
ing radial displacements exclusively, in which case (1) and (2) agree with (48)
and (49), respectively.

Tustions corresvomdsng to (53 Sorough (5C) for other coardinate systems
may be obtained directly from equations (48) and (49), which are general tensor

equations.

-
it
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